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ABSTRACT 

 There are certain wideband signals that occupy quite large bandwidths but may 

have dominant amplitudes in certain frequency bands. In this work, we show that these 

signals can be effectively sampled by a lower sampling rate compared to what is required 

by the Nyquist-Shannon sampling theorem. These resonant frequency components are 

split into separate receiver paths (subchains or channels) and sampled at a much lower 

sampling rate than is required for the entire wideband signal. It is shown that 

reconstruction of the signal is improved, and the probability of detection performance 

experiences little or no degradation since the effective noise power is attenuated by the 

proposed method. 
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CHAPTER 1:
Introduction

The focus of the work presented here is to develop an innovative approach to receiver
design for wideband signals with resonant frequency components. In hindsight, the pro-
posed design is very intuitive, but the results and applications are profound. While many
engineering solutions are driven towards all-encompassing answers, the method developed
here is specialized to a specific class of signals. The lack of research and published work
signifies the need for research in this area.

1.1 Previous Receiver Design Strategies
While the sampling theorem only requires slightly more than the Nyquist rate for detection,
estimation, or reconstruction of bandlimited signals, in practice higher rates are actually
used due to various radio frequency (RF) receiver effects such as signal distortion and
noise. Thus, signals that have very large bandwidths require a very high-rate analog-to-
digital converter (ADC), which may be costly or technologically impractical. Many studies
have addressed the large bandwidth (in frequency) but sparse (in time) type of signals.
Previous methods demonstrated by [1]–[3] use compressed sensing techniques, which rely
on a sparse signal (in some domain) such that a very low sampling rate is feasible. For
reconstruction, however, the computational burden and latency may be significant due to
the optimization methods needed for signal reconstruction. Other methods [4] purposefully
alias the signal and apply innovative filters to reconstruct the signal or apply polyphase filter
banks to separate the signal [5].

1.2 Our Approach
Although some wideband signals may be sparse in the time domain due to the well-known
frequency-time duality, in this work we are interested in large-bandwidth signals that are
not necessarily sparse in the time domain. In other words, we investigate signals for which
compressive sensing techniques may fail. Yet we still desire a receiver architecture which
lowers the effective sampling rate needed for these types of signals. We propose a receiver
capable of doing so in this work. Our proposed method also lowers the computational
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burden. With our approach there is no need to alias the signal or apply a filter bank across
the entire bandwidth of the signal as others have done. The signal processing architecture
we propose is simple in nature, and the probability of detection performance is not degraded
with the effective lower sampling rate. This approach is ideal for a programmable application
specific receiver detecting a known signal of interest that is large in bandwidth and contains
dominant frequency bands. We call our method the “multiple low-rate samplers” (MLRS)
technique.

1.3 Objective
The technology described above is investigated using two performance metrics. First the
sum-squared error (SSE) is determined to measure the similarity between the signal and its
recovery or reconstruction. TheMLRS is compared against a traditional high-rate sampling
receiver. Next, we investigate probability of detection performance of the MLRS compared
to the matched filter receiver. These results are generated via Matlab simulation, Simulink
hardware simulation, and finally a field-programmable gate array (FPGA) implementation.
A hypothetical signal and practical signal aremodeled through the entire simulation process.

1.4 Thesis Organization
This thesis is organized into six chapters. Following the introduction in Chapter 1, the signal
modeling and the MLRS system architecture are described in Chapter 2. The underlying
theory for sum-squared error, probability of detection, matched filter design, and a general
discussion on the signal processing in the MLRS receiver is outlined in Chapter 3. The
results for the test signal along with a discussion on the FPGA hardware modeling and
simulation are presented in Chapter 4. A practical signal is modeled and its results are
given in Chapter 5. Finally, the conclusion and recommendations are summarized in
Chapter 6.

2



CHAPTER 2:
Signal Modeling

2.1 Modeling Wideband Signals of Interest
It is generally known that a carrier or passband signal can be downconverted to a complex
baseband representation. Let x(t) be a wideband, passband signal. Let X( f ) be the Fourier
transform of x(t). We consider X( f ) that contain dominant bands in the frequency domain
such as the signal shown in the top panel of Figure 2.1. Since X( f ) has dominant bands, it
can be approximated as the summation of the m prevailing frequency bands:

X( f ) ≈
m∑

i=1
ψi( f ), (2.1)

where ψi( f ) is the ith portion of the signal surrounding a given ith carrier or center frequency
fi. The approximate representation is shown in the bottom panel of Figure 2.1. Let BW be
the bandwidth of the signal X( f ) and Bi be the bandwidth of the ψi( f ). It stands to reason
the

∑m
i=1 Bi ≤ BW .

The received signal in the receiver is s(t) = x(t) + w(t) where w(t) is zero-mean white
Gaussian noise. Traditionally, the received signal s(t) requires sampling at greater than
2BW according to Nyquist, but by partitioning the signal into m sections in the frequency
domain, the signal ψi(t) in each receiver subchain has a Nyquist rate of 2Bi. In other
words, we can use a lower sampling rate in each receiver subchain and lower effective total
sampling rate.

2.2 Example Signal
Of course, the continuous-time signal is sampled in modern receivers. For simulation
purposes, we can normalize the sampling time to Ts = 1, such that the corresponding
signals are given by x[n], w[n], and s[n] where n = 0, 1, 2, ... N − 1. After fast Fourier
transform (FFT) operations, the corresponding discrete frequency transforms (DFT) are
given by X[ f ] and S[ f ]. The DFT X[ f ] can be approximated by X[ f ] ≈

∑m
i=1 ψi[ f ],

3
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where ψi[ f ] is the ith portion of the discrete signal surrounding a given ith carrier or center
frequency. We also define x, w, and s to represent the discrete time vectors for the sampled
signals. We assume the noise w to be white Gaussian noise.

Consider the signal x[n] with the normalized magnitude spectrum |X[ f ]| shown in the top
panel of Figure 2.2. This signal is clearly wideband, with rich frequency content and
dominant bands. Three prominent ψi[ f ] are highlighted in the top panel. It is these three
portions of the spectrum which are filtered into individual receiver subchains. In the middle
panel, the magnitude spectrum of the received signal plus some noise realization is also
shown. This signal is not sparse in the time domain as shown in the bottom panel of Figure
2.2.
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Figure 2.1. Wideband Signal Spectrum with Dominant Frequency Bands 
(top) and Subbands (bottom)
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Figure 2.2. Test Signal Spectrum (top), Test Signal Spectrum with a Noise
Realization (middle), and Time-Domain Test Signal (bottom)

2.2.1 Test Signal Creation
The arbitrary test signal x[n] shown in Figure 2.2 was intentionally created to demonstrate
a wideband signal which is not sparse in the time domain. This is necessary to demonstrate
that the technique proposed here works successfully, while the other sub-Nyquist techniques
previously mentioned do not. Although the signal is arbitrary, it is representative of actual
signals. We begin in the frequency spectrum to generate the test time-domain signal. Signal
shape and carrier frequencies are manipulated until the sought after response is achieved.
The test signal is created to be magnitude-symmetric in the frequency domain to allow for
both real and complex-valued signal possibilities. Obviously, the inverse Fourier transform
ultimately converts the frequency domain signal into the desired time-domain waveform.
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Note that each ψi[ f ] has more than one local maximum across the selected bandwidth. In
each receiver subchain, it is not necessary that the peak value be centered in the channel
or that there exist only a single maximum. Multiple maxima can be grouped together and
downcoverted at a given center frequency.

2.3 Multiple Low-Rate Sampler System Architecture
In Figure 2.3 we show the proposed MLRS receiver. We already assume that the RF
carrier is downconverted to an intermediate frequency (IF) signal s(t). The IF signal is
split (channelized) into m separate receiver subchains. Each subchain has a bandpass filter
(BPF) centered at the IF frequencies f1, f2... and fm. Each BPF isolates each subband signal
ψi( f ). Each subband signal is downconverted to baseband. The lowpass filter (LPF) in
each subchain is a critical component since it acts to filter out the intermodulation products.
Moreover, it acts as the antialiasing filter prior to analog-to-digital conversion. There are m

low-rate ADCs whose effective total sampling rate is clearly lower than the entire signal’s
Nyquist rate. The entire signal’s sampling rate Fs is given by Fs ≥ 2BW . Each subchain has
a smaller bandwidth, thus a lower Nyquist rate. This lower rate is determined by comparing
BW to the Bi. This ratio is given by

Di =
BW

Bi
, (2.2)

where Di is the ratio of BW to Bi in the ith channel and is found by rounding down to the
nearest integer value. The individual channel sampling frequency is given by

Fs,i ≥
Fs

Di
, (2.3)

where Fs,i is the sampling frequency of the ith channel.

Next, each subband signal corresponding to a subchain is fed into a digital architecture
containing an FPGA/microprocessor module. Each subband signal is upconverted into its
original IF center frequency. In other words, we assume that we can clock the digital module
(the FPGA and the microprocessor) at a higher clock rate, i.e., higher than the clock rate
for the low-rate ADCs. The subband signals are added for signal recovery.

For detection purposes, a matched filter is used. Since we completely know the MLRS
receiver design and signal-of-interest x[n], the actual MLRS matched filter is developed

6
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Figure 2.3. Multiple Low-Rate Samplers (MLRS) Receiver

from noise-free reconstruction x̃[n]. While the signals are very similar, the optimal filter 
for MLRS is based on the noise-free reconstruction and not the original signal.
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CHAPTER 3:
Recovery and Detection Theory

3.1 Signal Recovery Error
The first point of interest is how much similarity there is between the recovered and original
signal. The metric used is the sum-squared error (SSE) which is given by

J =
∑N−1

n=0 |x[n] − s̃[n]|2

E
, (3.1)

where x[n] is the original signal, s̃[n] is the recovered signal (where noise is present), and
E is the energy of x[n]. We have expanded upon the SSE in [6] by normalizing the SSE by
E .

Once again observe the signal-plus-noisemagnitude spectrum in the top panel of Figure 3.1.
After applying our MLRS technique, the magnitude spectrum is shown in the bottom panel
of Figure 3.1. Notice that our MLRS technique does not exactly recover (or reconstruct)
the signal completely. The non-dominant amplitudes are attenuated. Clearly, some signal
energy or information is lost. Notice also that the noise in these bands is attenuated; thus,
two questions arise. First, will the attenuation in signal increase the SSE of MLRS or
the attenuation of noise actually lower the SSE? Second, how is the detection probability
affected knowing that potentially a large portion of signal energy is removed by the MLRS
filters?

3.2 Matched Filters
The detection performances of the MLRS and traditional high-rate sampling receiver, each
with its own respective matched filter, are compared in this work. A matched filter is proven
to maximize the SNR when a signal is present in white Gaussian noise. The complete
derivation of a matched filter for a known signal is shown in [7]. Here, only the results
are summarized, and the notation is updated to reflect our work. The optimal filter for the
signal x(t) is given by

9
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Figure 3.1. Test Signal  in Noise  Spectrum  (top) and  its Corresponding  
Reconstruction  Spectrum  (bottom)

h(t) = k x∗(τ − t), (3.2)

where k is an arbitrary gain, τ is the duration of the signal, and ∗ represents the conjugate
operation.

3.3 Probability of Detection —Matched Filter
We wish to compare the probability of detection PD using our proposed MLRS design vice
the signal’s broadband matched filter used in a traditional high-rate sampling receiver. In
matched filter receiver design, a given probability of false alarm PF A specification gives

10



rise to the receiver threshold
γ′ =

√
σ2EQ−1(PF A), (3.3)

where σ2 is the sample variance of the white Gaussian noise, E is the energy of the real
signal x[n], and Q−1 represents the inverse Q-function [8]. It can be shown that the PD for
a specified signal-to-noise ratio E/σ2 and PF A is given by

PD = Q
(
Q−1(PF A) −

√
E
σ2

)
. (3.4)

It is clear from (3.4) that as the SNR increases so does PD. Additionally, the PD is
independent of the signal’s shape. The theoretical PD curve for a signal with PF A = 10−2

is shown in Figure 3.2.

3.4 Probability of Detection —MLRS
The matched filter PD can be generalized and applied to the MLRS receiver. It has been
made clear that the signal energy and noise are reduced by the receiver. The recovered
signal energy and noise variance can be determined mathematically or via simulation. An
important effect that must now be accounted for is the filtering of the white Gaussian noise.
This noise is no longer uncorrelated but has some defined covarianceC andmust be included
in the PD derivation. The PD for the MLRS receiver is given by

PD = Q
(
Q−1(PF A) −

√
x̃′C−1 x̃

)
, (3.5)

where x̃ is the noise-free reconstruction of x, C is the noise covariance matrix due to
the MLRS filters, and ′ represents the transpose operation [8]. With a known or accurate
estimate of the covariance matrix of the noise, the PD given by (3.5) matches the PD given
by (3.4).

3.5 Monte Carlo Simulation
While it can be shown theoretically that the PD for the MLRS receiver is given by (3.5),
we determine the PD of the MLRS receiver through a Monte Carlo simulation. We wish
to find the PD via determining the number of times the decision statistic is greater than the

11
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10−2

threshold. The decision statistic T is given by

T( s̃) = x̃′C−1 s̃, (3.6)

where s̃[n] is the recovered signal with noise present.

The threshold γ′ is given by

γ′ =
√
x̃′C−1 x̃Q−1(PF A). (3.7)

The signal flow diagram is shown in Figure 3.3 to indicate the signal variables and the
detection process. The signal is considered present if the detection statistic exceeds the
threshold; thus PD is found by dividing the number of times the threshold is exceeded by

12
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Figure 3.3. Signal Detection Flowpath

the number of trials. This process is repeated across a range of SNR values. The number
of Monte Carlo trials at a given SNR throughout this work is 5,000.

The SNR is adjusted by increasing the signal energy as opposed to changing the noise vari-
ance. We let the sample variance of the noise equal unity in this work. In the development
of test signal x[n], we emphasized the shape and relative scale of the peaks in the frequency
response and not necessarily the signal energy. This must now be corrected to achieve
the correct SNR. First, the signal energy is normalized. Next, x[n] is multiplied by a gain
k =
√

SNR, where SNR is in its decimal form.

3.6 Recovered Signal
Both the signal and noise energy are reduced by the MLRS receiver, although not 
equally. Energy outside of the selected bands is greatly attenuated, while these dominant 
bands are filtered into subchains for processing.

3.6.1 Signal Energy
The receiver clearly reduces the signal energy in the non-dominant portions of the spectrum.
The exact amount is dependent upon the signal and receiver design. Aspects of receiver
design include the number of subchains and the parameters associated with filter design.

The noise-free test signal and its reconstruction are compared in the Figure 3.4. Visually,
the reconstruction x̃[n] appears to be a good representation of the original signal x[n]. The
sum-squared error quantifies how closely the recovered signal is to the original.
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3.6.2 Noise in the Frequency Domain
It is interesting to see what happens to the noise when going through the MLRS filters. In
the top panel of Figure 3.5 the Fourier transform of a white Gaussian noise realization is
shown. In the bottom panel, another Fourier transform of a white Gaussian noise realization
is shown after MLRS receiver processing. The noise is now altered by the selective filtering
at the specified bands. Notice the attenuation effects of the three MLRS filters. While
the noise vector is no longer uncorrelated, it still follows a Gaussian distribution but with
a certain covariance matrix. The noise covariance is accounted for in the matched filter;
therefore, the detection performance depends upon the covariance of the noise.
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CHAPTER 4:
Test Signal Results

The results from calculation, simulation, and hardware implementation for the test signal
are presented here. Recall that the signal is arbitrarily designed but is representative of
wideband yet not-so-sparse time-domain signals that MLRS is supposed to address.

4.1 Simulation Configuration Parameters
In order to quantify and better understand the following results, the receiver filter design
specifications are listed in Table 4.1. Recall in Figure 2.2 that the signal has three dominant
portions in the spectrum; thus, three subchains are designed for the receiver. Finite-impulse
response (FIR) filters are used in the MLRS receiver subchains.

Table 4.1. Model Design Parameters for Test Signal

Filter Order Passband
Bandpass 1 20 0.0665-0.1815
Bandpass 2 20 0.2295-0.2935
Bandpass 3 20 0.3225-0.4415
Lowpass 20 0-0.09

Low-order filters are chosen to keep the computational complexity and cost low. The
combination of filter order and passband resulted in approximately 60% of the spectrum
bandwidth being rejected by this receiver design, but 82% of the signal energy was retained.

4.2 Sum-Squared Error
We look first at the reconstruction of the signal using MLRS. It is shown that the dominant
bands of the original signal are not attenuated as are the amplitudes outside these bands
in Figure 3.1. While the attenuation may be disconcerting since it does reduce the signal
energy and affect reconstruction, the MLRS effectively reduces the noise power more than
it reduces the signal power. The SSE decreases with increasing SNR for both MLRS
and traditional high-rate sampling receivers as seen in Figure 4.1. It is clear that MLRS
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Figure 4.1. MLRS and Traditional High-Rate Sampler Sum-Squared Error
for Test Signal

improves the SSE. The MLRS provides a more accurate representation of the original by
selectively filtering the signal when compared to the output of the signal sampled by a
traditional high-rate sampler.

Due to our definition of the SSE, a second observation can be made about the SSE. The
SSE is defined as the summed difference between the signal and its reconstruction (or signal
plus some noise in the case of the traditional high-rate sampler) squared. For the traditional
high-rate sampler, once the signal plus some noise is subtracted from the signal, we are left
only with the noise. This simplified relation is given by

J =
∑N−1

n=0 |w[n]|
2

σ2SNR
, (4.1)
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where the test signal energy E is replaced by σ2SNR. We can simplify this further since
the SNR at 0 dB is 1.0; and the SSE is 1,000 at 0 dB. Rearranging this equation for σ2 gives

σ2 =

∑N−1
n=0 |w[n]|

2

1000
. (4.2)

Noise generation in Matlab shows the numerator of this equation approaches 1,000; there-
fore, σ2 = 1.0, which is the sample noise variance used for our simulations. Similarly this
explanation can be applied to the MLRS. In this case, the difference between the signal and
its reconstruction does not perfectly cancel out the test signal to result in only noise; how-
ever, the MLRS filters attenuate the noise more than the signal, and thus, the noise variance
is lowered, which in turn lowers the SSE. The effective noise variance is approximately
0.428 for the MLRS receiver. When the SNR is increased in Figure 4.1, the signal energy
is increased while keeping the noise variance as unity; thus, the increasing signal energy
causes the SSE to decrease.

4.3 Probability of Detection Results
Next we analyze the effect of MLRS on probability of detection. As noise is attenuated and
the signal’s dominant bands are retained, we anticipate that PD is not degraded significantly
as long as the estimate of the noise covariance is accurate. The PD for various PF A are shown
in Figure 4.2. For each given PF A, the MLRS receiver agrees well with the performance
of the traditional wideband matched filter. Here we recall that the MLRS matched filter
includes the noise covariance matrix. In our work, the covariance matrix is determined via
simulation. These results are generated via MATLAB script and confirmed by a Simulink
model. It should be noted that a second probability of detection scenario was conducted
without inclusion of the covariance matrix. The threshold was tuned to achieve the correct
PF A, but this resulted in poorer detection performance. This is because the resulting noise
due to the FIR filters is now correlated; thus, to achieve the original detection curve for
the test signal, the covariance matrix is needed to whiten the noise output of the MLRS
matched filter.

Despite the detection performance and gains on SSE, we note that one of the more exciting
advantages of this work is the use of low-rate samplers. It is well known that a single
high-rate ADC is more expensive than an integrated chip (IC) containing low-rate ADCs.
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Figure 4.2. MLRS and Matched Filter Detection Performance for Test Signal
for PF A = 10−2, 10−3, and 10−4

For example, a 1.0 Gsps ADC costs on the order of a few hundred dollars, whereas an
identical ADC in terms of bit precision (number of quantization bits) with a 10.0 Msps rate
costs less than ten dollars [9],[10].

In practice, low-cost integrated chip packages of two or four ADCs are readily available.
By using these low-rate samplers, both actual cost and computational cost are significantly
reduced. Each receiver subchain can be sampled individually at a reduced rate of Fs/Di

without any degradation in the probability of detection. For the particular signal in Figure
2.2, the corresponding Dis for each ψi[ f ] are D1 = 4, D2 = 7, and D3 = 4. The probability
of detection is shown using these Di in Figure 4.2.
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4.4 Hardware Modeling
The Simulink andMATLAB simulation models are identical in terms of results up until this
point as they both use double-precision arithmetic and are primarily mathematical models
in each case. In order to physically realize this model on an FPGA, the Simulink model was
converted to fixed-point precision, and basic arithmetic blocks were replaced with hardware
description language (HDL) optimized blocks. These blocks are required to generate the
C and HDL to program the processor and FPGA for operations. The Xilinx synthesis tool
was used to create the bitstream and once generated, this bitstream was downloaded to the
local secure digital (SD) card on the FPGA. This programming method allows the board to
restart without loss of the programmed data.

The resulting Simulink model which was implemented in hardware is detailed in Figure
4.3. Note that only a single receiver subchain is shown. In reality there are three channels
for the test signal. The overall design is similar to that described in Figure 2.3. One
exception is that the entire process is digital, and the complete MLRS receiver architecture
is modeled on the FPGA rather than what is indicated inside the dashed box in Figure 2.3.

The HDL workflow advisor in Simulink compiles C and HDL programming language to
execute functions on the processor and FPGA, respectively. In addition, a model interface
is generated which loosely resembles the original Simulink model. In this representation
the filters, oscillators, and various receiver components are written in C or VHDL, and
the model simply connects our inputs from the model workspace to the board through an
AXI-Lite interface. In the same way, the output of the board is fed through an AXI-Lite
interface back into the workspace.

The Xilinx Zynq-7000 SoC ZC706 is chosen for our hardware implementation of the
MLRS receiver. This board and the connections used are shown in Figure 4.4. The UART
connection on the board is used to create a serial connection using PuTTY to monitor the
onboard performance and conduct diagnostics. The Ethernet connection is used for data
transfer between the board and Simulink workspace. The board is controlled through a
Matlab script which initiates the Simulink graphic model interface linked to the MLRS
program downloaded on the FPGA SD card.
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Figure 4.3. Simulink Receiver Subchain Model

4.5 Hardware Results
Probability of detection results from the hardware are expected to match the performance
shown by the MATLAB and Simulink simulation models with some small variations de-
pending on the number ofMonteCarlo trials used. The inclusion of hardware is an important
proof-of-concept in the process of fielding this technology. The successful programming
of the hardware demonstrates the ability of the receiver to operate without external inter-
vention.

The hardware detection performance is shown alongside the previous simulation results in
Figure 4.5. The hardware results are consistent with the previous simulations. The slight
PD degradation in the hardware results is likely from quantization, estimation of the noise
covariance, and fixed-point precision. Graphically shown here are the results from setting
the PF A to 10−2, but similar results are found across the range of false alarm probabilities.
Again, meeting the detection performance of a matched filter is an important check, but
the benefit of this work comes from the low-rate ADCS. Here the individual channels are
sampled at the reduced rate of Fs/Di, and the corresponding Dis for each ψi[ f ] are D1 = 4,
D2 = 7, and D3 = 4.
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Figure 4.4. Xilinx Zynq-7000 SoC ZC706
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CHAPTER 5:
Practical Target Model and Results

In this chapter a practical target response is considered. Here, we use a radar cross section
(RCS) frequency response generated from an electromagnetic software simulation. The
same performance metrics of sum-squared error and probability of detection are tested in
Matlab, Simulink, and hardware. Observations between the real signal and example signal
of the previous section are made.

5.1 RCS Target Response
Now that theMLRS concept has been proven successful for the initial test signal, we wish to
apply the MLRS to a practical signal and investigate the improvement in SSE and its effect
on detection probability. The signal chosen is a particular frequency response from an A6
tank [11]. The physical target and the frequency response are shown in Figure 5.1. This
target response uniquely corresponds to the aspect angle of φ = 0◦ and θ = 45◦. Apart from
being a RCS target response, the signal is at a higher frequency band than the previously
modeled signal. The A6 signal is measured from 3-4 GHz. In simulation the sampling time
is normalized.

Unlike the previous signal, the dominant bands in the A6 signal are less clear. Seven
prominent ψi[ f ] are chosen for the MLRS receiver design. They are shown in Figure 5.1.
We briefly considered an alternate design using five subchains. In this model ψ4[ f ], ψ5[ f ],

and ψ6[ f ] were combined together under a single center frequency. The preliminary PD

results from this variant were the same of those of the seven channel design. Recall that
the combining of multiple resonant amplitudes under a single center frequency was also
performed with the test signal in Figure 2.2.

5.2 Simulation Configuration Parameters
The receiver for the real target signal is architecturally the same as that for the previous
signal but differs in the number of subchannels and filter parameters. The receiver design

25



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S
ig

na
l M

ag
ni
tu
de

|X[f ]|

[ ]

2[ ]

3[ ] 4[ ]

5[ ]
6[ ]

7[ ]

3 3.2 3.4 3.6 3.8 4
Frequency GHzA6 Tank
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Adapted from [11].

specifications are listed in Table 5.1. As shown in Figure 5.1, the signal has seven dominant
portions in the spectrum; thus, seven subchains are designed for the receiver.

Table 5.1. Model Design Parameters for A6 Signal

Filter Order Passband
Bandpass 1 80 0.0075-0.0225
Bandpass 2 80 0.1075-0.1085
Bandpass 3 80 0.185-0.210
Bandpass 4 80 0.275-0.295
Bandpass 5 80 0.322-0.349
Bandpass 6 80 0.369-0.371
Bandpass 7 80 0.455-0.475
Lowpass 80 0-0.125

Apart from the changes in the passband of the filters, the order of the bandpass filters is also
increased. Higher order filters are chosen to allow a steeper roll-off between the passband
and stopband. This allows for finer selection of the bands and better reconstruction of
the signal. Higher order filters generally increase the number of computations but not
significantly in this case.
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In addition to the desire to have better control over the passband and stopband, higher
order filters are chosen to reject more of the noise and prevent filter overlap. Due to the
number of channels and their spacing, if low-order filters are used, the filters overlap. While
overlapping filters is not necessarily a problem, it is not the approach we are proposing for
our receiver design. In this MLRS design approximately 78% of the spectrum bandwidth
is rejected by this MLRS design but 57.6% of the signal energy is retained.

The order of lowpass filters could remain at 20 for specific channels. In most subchains the
gap in the spectrum between the desired baseband signal and the intermodulation products
is large; thus, a lower-order filter is adequate. There are two particular subchains in which
we are not able to use low-order filters. These filters do not adequately attenuate the inter-
modulation products within these two subchains and cause distortion in the reconstruction.
In order to keep filter order uniform, higher-order filters are chosen for all subchains.

5.3 Sum-Squared Error
We begin by comparing the similarity between the reconstructed signal and the original.
The baseline for our comparison is the output signal of the traditional high-rate sampling
receiver. The results are displayed in Figure 5.2. The MLRS receiver is shown to have
better SSE than the traditional wideband receiver. The effective variance of the noise at the
output of the MLRS is shown to be 0.21 at a SNR of 0 dB.

5.4 Probability of Detection
In the probability of detection scenario we once again compare the MLRS receiver against
a traditional wideband matched filter. The setup and simulation procedure used for the
previous signal is unchanged. The results from both the Matlab and Simulink simulations
are shown in the top panel of Figure 5.3. Each channel was sampled at a reduced rate of
Fs/Di without any degradation in the probability of detection. The Di is found for each
channel from (2.2). The Dis for each ψi[ f ] are D1 = 16, D2 = 25, D3 = 10, D4 = 12,
D5 = 9, D6 = 25, and D7 = 12. Not all of the channels here are sampled at the minimum
sampling rate. Theoretically, ψ2[ f ] and ψ6[ f ] have a higher Di due to the very narrow
bandwidth occupied by these resonant portions of the spectrum, but this is impractical
in a digital simulation. The higher Di results in discarding too much of the signal for
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Figure 5.2. MLRS and Traditional High-Rate Sampler Sum-Squared Error
for A6 Target Response

reconstruction. These two dominant portions are represented by only a few samples, and
it is possible to completely skip the narrow peaks with a higher Di. Thus, a smaller, yet
substantial value is chosen for D2 and D6.

The PD results graphically look very similar to that produced for the example signal.
The Matlab and Simulink simulation models both follow the detection performance of
the matched filter closely. The hardware results are shown in the bottom panel of Figure
5.3. There is a slight degradation due to quantization and covariance estimation, but the
performance is still comparable to that of a matched filter.
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CHAPTER 6:
Conclusion

6.1 Summary of Results
In this study it has been shown that particular wideband signals with dominant amplitudes
at specific frequency bands can be sampled at a lower total effective sampling rate. The
method has been shown to be applicable to both arbitrary and practical target signals. The
MLRS technique solves the requirement of a high sampling rate and retains the signal’s
probability of detection. It was shown that theMLRS performed aswell as a traditional high-
rate sampler with a matched filter in Matlab and Simulink simulation models. Hardware
results indicated a slight degradation in performance of the MLRS probability of detection
compared to the theoretical performance. In addition, it was shown that theMLRS improved
the reconstruction of the signal. The sum-squared error was less for the MLRS because the
effective noise variance was lowered.

6.2 Future Work
While the signal was tested on hardware, there is still significant work to be explored in
this area. The concept was proven to run alone on the board while a signal was sent from
the computer to the board and back. In future simulations and in practical applications, the
signal must be received over the air. The framework for this is already in place, and the
hardware is readily available.

While the method was shown to be successful, the methodology for selecting the resonant
frequency bands was based on arbitrarily choosing the bandwidths of the subbands. In other
words, practical guidelines can be developed when choosing the center frequencies and the
subband energies to be preserved by the filters. The filter order was chosen to be small. The
FIR filters were chosen for simplicity. A trade-off study between different types of filters
would benefit this research.

The exact covariance structure of the noise can be mathematically determined but was not
the focus of our work. Derivation of the exact noise covariance after the summation of filter
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outputs would save time and add value to the hardware’s adaptability.
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